|
NuMFor cf0f85d (2025-09-27)
Numerical (Modern) Fortran. Library for Simple Numerical computing
|
Integration by Adaptive Simpson method of a function on a semi-infinite interval, based on iads() More...
Integration by Adaptive Simpson method of a function on a semi-infinite interval, based on iads()
The routine calculates an approximation 
![\[ J \approx I =\int_{a}^{\infty} f(x, args) dx \]](form_24.png)
hopefully satisfying
![\[ || I - J || \le \max ( epsabs, epsrel \cdot ||I|| ). \]](form_23.png)
| [in] | f | The function to integrate |
| [in] | a | (real) lower limit of integration |
| [in] | brkpts | (real, array) Break points where the integration domain will be split |
| [in] | args | (real, array, optional) extra arguments (if needed) to be passed to the function f |
| [out] | IntVal | (same kind as f) Approximation to integral |
| [in] | epsabs | (real, optional) Absolute accuracy requested. Default = 1.e-7 |
| [in] | epsrel | (real, optional) Relative accuracy requested. Default = 1.e-5 |
| [out] | abserr | (real, optional) Estimation of absolute error achieved |
| [out] | neval | (integer, optional) Number of function evaluations performed |
| [out] | ier | (integer, optional) Error code |