NuMFor 9f2ab49 (2024-04-08)
Numerical (Modern) Fortran. Library for Simple Numerical computing
|
splint Evaluates the definite integral of a B-spline. More...
Public Member Functions | |
subroutine | splint_0 (tck, a, b, y) |
subroutine | splint_f (tck, a, b, y, wrk) |
splint Evaluates the definite integral of a B-spline.
Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing polynomial between two given points.
subroutine splint_0 | ( | type(univspline), intent(in) | tck, |
real(dp), intent(in) | a, | ||
real(dp), intent(in) | b, | ||
real(dp), intent(out) | y ) |
[in] | tck | The object with the information on the spline |
[in] | a | Lower limit of the integral |
[in] | b | Upper limit of the integral |
[out] | y | Result of the integral |
subroutine splint_f | ( | type(univspline), intent(in) | tck, |
real(dp), intent(in) | a, | ||
real(dp), intent(in) | b, | ||
real(dp), intent(out) | y, | ||
real(dp), dimension(size(tck%c) - tck%k - 1), intent(out) | wrk ) |
[in] | tck | The object with the information on the spline |
[in] | a | Lower limit of the integral |
[in] | b | Upper limit of the integral |
[out] | y | Result of the integral |
[out] | wrk | Integral of each B-spline for i=1,...,n-k-1 |