NuMFor 6161170 (2025-12-22)
Numerical (Modern) Fortran. Library for Simple Numerical computing
splint

splint Evaluates the definite integral of a B-spline. More...

Public Member Functions

subroutine splint_0 (tck, a, b, y)
subroutine splint_f (tck, a, b, y, wrk)

Detailed Description

splint Evaluates the definite integral of a B-spline.

Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing polynomial between two given points.

Examples:

call splrep(x, y, tck=tck, s=0._dp)
call splint(tck, zero, m_pi / 2._dp, yi) ! yI = 1.000630799770

Member Function/Subroutine Documentation

◆ splint_0()

subroutine splint_0 ( type(univspline), intent(in) tck,
real(dp), intent(in) a,
real(dp), intent(in) b,
real(dp), intent(out) y )
Parameters
[in]tckThe object with the information on the spline
[in]aLower limit of the integral
[in]bUpper limit of the integral
[out]yResult of the integral

◆ splint_f()

subroutine splint_f ( type(univspline), intent(in) tck,
real(dp), intent(in) a,
real(dp), intent(in) b,
real(dp), intent(out) y,
real(dp), dimension(size(tck%c) - tck%k - 1), intent(out) wrk )
Parameters
[in]tckThe object with the information on the spline
[in]aLower limit of the integral
[in]bUpper limit of the integral
[out]yResult of the integral
[out]wrkIntegral of each B-spline for i=1,...,n-k-1

The documentation for this interface was generated from the following file:
  • /home/fiol/Trabajos/fortran/numfor/src/interpolate/wfitpack.f90