|
NuMFor cf0f85d (2025-09-27)
Numerical (Modern) Fortran. Library for Simple Numerical computing
|
This function computes the probability density function (pdf) p(x) at x for a Gaussian distribution with standard deviation scale, using the formula given above.
More...
Public Member Functions | |
| real(dp) function | ran_gauss_pdf_s0 (x) |
| ran_gauss_pdf Computes the probability density function (pdf) for a Gaussian distribution | |
| real(dp) function, dimension(size(x)) | ran_gauss_pdf_v0 (x) |
| ran_gauss_pdf Computes | |
| real(dp) function, dimension(size(x)) | ran_gauss_pdf_v1 (x, scale) |
| ran_gauss_pdf Computes | |
| real(dp) function, dimension(size(x)) | ran_gauss_pdf_v2 (x, scale, loc) |
| ran_gauss_pdf Computes | |
This function computes the probability density function (pdf) p(x) at x for a Gaussian distribution with standard deviation scale, using the formula given above.
It returns the value of the function
![\[ p(x) = {1 \over \sqrt{2 \pi \sigma^2}} \exp (-x^2 / 2\sigma^2) \]](form_91.png)
Here the argument x may be scalar or a 1D-vector
| real(dp) function ran_gauss_pdf_s0 | ( | real(dp), intent(in) | x | ) |
ran_gauss_pdf Computes the probability density function (pdf) for a Gaussian distribution
x | [in] | x | value of argument |