|
NuMFor cf0f85d (2025-09-27)
Numerical (Modern) Fortran. Library for Simple Numerical computing
|
Subroutine qcheb computes the coefficients of the Chebyshev series expansion of degrees 12 and 24 of a function using a fast Fourier transform method. More...
Subroutine qcheb computes the coefficients of the Chebyshev series expansion of degrees 12 and 24 of a function using a fast Fourier transform method.
![\[ f(x) = \sum_{k} (\mathrm{Cheb}(k) T_{k-1}(x) , \]](form_75.png)
where 
Reference: Robert Piessens, Elise de Doncker-Kapenger, Christian Ueberhuber, David Kahaner, QUADPACK, a Subroutine Package for Automatic Integration, Springer Verlag, 1983. (Section 2.2.3.2)
| [in] | x | (real, dimension(11)) values of |
| [in,out] | fval | (real or complex, dimension(25)) |
| [out] | cheb12 | (real or complex) the Chebyshev coefficients for degree 12 |
| [out] | cheb24 | (real or complex) the Chebyshev coefficients for degree 24 |