NuMFor 9f2ab49 (2024-04-08)
Numerical (Modern) Fortran. Library for Simple Numerical computing
Data Types List
Here are the data types with brief descriptions:
[detail level 12]
 Marray_utilsThis module provides convenience routines to operate or get information on arrays
 Csave_arraySave_array Stores an 1D or 2D array to file or stdout
 MbasicThis module will provide some basic convenience routines Description
 CtimerSimple timer. Holds start-time, stop-time, and time-difference
 McsplinesCsplines implements interpolation using cubic splines Description: Submodule interpolate
 CcsplevCsplev Performs a spline interpolation in a point or in a table
 CcsplevderCsplev Performs a spline interpolation in a point or in a table
 CcubicsplineType used to keep all information on splines
 MexponentialExponential random distribution The exponential probability distribution located at $x_{0}$ and mean $\mu$, is given by
 Cran_exponential_pdfThis function computes the probability density p(x) at x for an exponential distribution
 Crandom_exponentialFills a scalar or array with random numbers following an exponential distribution
 MfitpackFitpack provides a framework for fitting and interpolation using B-Splines. Description: Submodule interpolate
 CsplevSplev Computes a B-spline or its derivatives
 CsplintSplint Evaluates the definite integral of a B-spline
 CunivsplineType used to keep all information on spline fitting
 MfstringModule defining the fStr object and its methods. Description
 CfstrThis type defines a string class, with its methods
 Mfunc_integDefinition of integrable functions Description: Submodule Integrate
 Cnf_cfunctionType to encapsulate complex functions and extra arguments
 Cnf_rfunctionType to encapsulate real functions and extra arguments
 MgaussNormal random distribution The normal probability distribution located at $x_{0}$ and standard deviation $\sigma$, is given by
 Cran_gaussian_pdfThis function computes the probability density function (pdf) p(x) at x for a Gaussian distribution with standard deviation scale, using the formula given above
 Crandom_normalFills a scalar or array with random numbers following a normal (gaussian) distribution
 Crandom_standard_normalConvenience routine. Fills a scalar or array with random numbers following a standard normal (gaussian) distribution. Equivalently to random_normal() with scale=1 and loc=0
 Crng_normalFunctions returning a variate x with normal probability
 Crng_normal2Functions returning a variate x with normal probability
 MhistogramsThe module histograms provides infrastructure for the calculation of histograms. i.e: a count of frequency
 ChistogType histogram holds the data from an histogram
 MpolynomialPolynomials provides a framework for simple (and quite naive) work with polynomials Further description in Submodule interpolate
 CpolyvalComputes the value of the polynomial when applied to a number or list of numbers
 MqadaptiveGlobally adaptive Simpson integrator. Description: Submodule Integrate
 CiadsIntegration by Adaptive Simpson method of a function by a globally adaptive strategy, using a Simpson rule
 CiadsiIntegration by Adaptive Simpson method of a function on a semi-infinite interval, based on iads()
 MqsimpsonRoutines for trapezoid and simpson integration of both sampled data and functions. Description: Submodule Integrate
 CsimpsRoutines for integration of sampled values or functions by using Simpson rule
 CtrapzRoutine for integration of sampled values or functions by using the trapezoid rule
 MqtanhsinhImplementation of tanh-sinh integration method. Description: Submodule Integrate
 CqnthshSubroutine qnthsh implements integration by tanh-sinh method
 MquadpackWrapper of (slightly modified) QUADPACK routines Description: Submodule Integrate
 Cc_qp_extraType used to pass extra (optional) information with the integration routines
 Cd_qp_extraType used to pass extra (optional) information with the integration routines
 CqagGlobally adaptive integration routine without weights
 CqagpSubroutine qagi is a globally adaptive, automatic interval subdivisions with epsilon extrapolation without weights for an infinite interval
 CqagsSubroutine qags is a globally adaptive, automatic interval subdivisions with epsilon extrapolation without weights
 CqawcSubroutine qawc computes the Cauchy principal value
 CqawfQawf computes Fourier integrals over the interval [ A, +Infinity )
 CqawoSubroutine qawo is designed for integrands with an oscillatory factor,
 CqawsSubroutine qaws estimates integrals with algebraico-logarithmic endpoint singularities given by the weight function $ W(x) $
 CqchebSubroutine qcheb computes the coefficients of the Chebyshev series expansion of degrees 12 and 24 of a function using a fast Fourier transform method
 CqextrSubroutine qextr carries out the Epsilon extrapolation algorithm
 CqgkRoutine to perform the integration of a function by Gauss-Kronrod rule
 Cqk15wRoutine to perform the integration of a weighted function by 15-points Gauss-Kronrod rule
 CqngQng estimates an integral using non-adaptive integration
 Mrandom
 Crandom_real_posFunction returning a real number in the open interval (0,1)
 Crandom_seedInitialize the random number generator
 MsortingSort provides a framework for searching elements and sorting arrays
 CsearchsortedSearchsorted: Find index where an element should be inserted in an array to maintain order
 MstringsThis module defines functions to manipulate strings of characters. Description
 Cstrstr() converts a number (integer or real) to a string
 MuniformUniform Random distribution Description: randist
 Crandom_sampleUniform Random distributions Fills a scalar or array with random numbers in the half-open interval [0, 1)
 Crandom_uniformFills a scalar or array with random numbers in the half-open interval [low, high)
 Crng_stateRng_state holds the state of the generator